Stochastic Three-Composite Convex Minimization

نویسندگان

  • Alp Yurtsever
  • Bang Công Vu
  • Volkan Cevher
چکیده

We propose a stochastic optimization method for the minimization of the sum of three convex functions, one of which has Lipschitz continuous gradient as well as restricted strong convexity. Our approach is most suitable in the setting where it is computationally advantageous to process smooth term in the decomposition with its stochastic gradient estimate and the other two functions separately with their proximal operators, such as doubly regularized empirical risk minimization problems. We prove the convergence characterization of the proposed algorithm in expectation under the standard assumptions for the stochastic gradient estimate of the smooth term. Our method operates in the primal space and can be considered as a stochastic extension of the three-operator splitting method. Finally, numerical evidence supports the effectiveness of our method in real-world problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic dual averaging methods using variance reduction techniques for regularized empirical risk minimization problems

We consider a composite convex minimization problem associated with regularized empirical risk minimization, which often arises in machine learning. We propose two new stochastic gradient methods that are based on stochastic dual averaging method with variance reduction. Our methods generate a sparser solution than the existing methods because we do not need to take the average of the history o...

متن کامل

UniVR: A Universal Variance Reduction Framework for Proximal Stochastic Gradient Method

We revisit an important class of composite stochastic minimization problems that often arises from empirical risk minimization settings, such as Lasso, Ridge Regression, and Logistic Regression. We present a new algorithm UniVR based on stochastic gradient descent with variance reduction. Our algorithm supports non-strongly convex objectives directly, and outperforms all of the state-of-the-art...

متن کامل

Stochastic Composite Least-Squares Regression with Convergence Rate $O(1/n)$

We consider the minimization of composite objective functions composed of the expectation of quadratic functions and an arbitrary convex function. We study the stochastic dual averaging algorithm with a constant step-size, showing that it leads to a convergence rate of O(1/n) without strong convexity assumptions. This thus extends earlier results on least-squares regression with the Euclidean g...

متن کامل

Accelerated Stochastic Gradient Method for Composite Regularization

Regularized risk minimization often involves nonsmooth optimization. This can be particularly challenging when the regularizer is a sum of simpler regularizers, as in the overlapping group lasso. Very recently, this is alleviated by using the proximal average, in which an implicitly nonsmooth function is employed to approximate the composite regularizer. In this paper, we propose a novel extens...

متن کامل

The proximal point method revisited∗

In this short survey, I revisit the role of the proximal point method in large scale optimization. I focus on three recent examples: a proximally guided subgradient method for weakly convex stochastic approximation, the prox-linear algorithm for minimizing compositions of convex functions and smooth maps, and Catalyst generic acceleration for regularized Empirical Risk Minimization.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016